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Abstract

While a great number of predictive variables for stock returns have been suggested,

their prediction power is unstable. We propose a Least Absolute Shrinkage and Selec-

tion Operator (LASSO) estimator of a predictive regression in which stock returns are

conditioned on a large set of lagged covariates, some of which are highly persistent and

potentially cointegrated. We establish the asymptotic properties of the proposed LASSO

estimator and validate our theoretical findings using simulation studies. The application

of this proposed LASSO approach to forecasting stock returns suggests that cointegrat-

ing relationships among the persistent predictors leads to a significant improvement in

the prediction of stock returns over various competing models in the mean squared error

sense.
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1 Introduction

This paper focuses on the predictive regression for stock returns. We propose a Least Abso-

lute Shrinkage and Selection Operator (LASSO) approach to the predictive regression in the

presence of cointegration among highly persistent predictors. Specifically, in the predictive

regression for stock returns, the information set we consider consists of a mixture of many

stationary predictors as well as a few highly persistent predictors that are integrated of order

1 (I(1) series). We find that there exists at least one cointegrating relationship among the per-

sistent predictors commonly used in the finance literature for predicting stock returns. Our

empirical study shows significant improvement in return predictability using the proposed

LASSO approach compared with the traditional ordinary least squares (OLS), historical av-

erage, and AR(1) models in most cases. This could be due in large part to the presence of

cointegration. Our empirical study finds that the proposed LASSO approach improves the

forecasting of stock returns significantly compared to other methods, including the historical

mean, the OLS, and more recent forecasting combinations.

Return predictability has been of perennial interest to financial practitioners and scholars

within the economics and finance professions. To this end, empirical studies employ lin-

ear predictive regression models, (for instance, refer to Stambaugh (1999), Binsbergen et al.

(2010) and the references therein). The predictive regression allows forecasters to focus on

the prediction of asset returns conditioned on a set of one-period lagged predictors. In a typ-

ical example of predictive regression, the dependent variable is the rate of return on stocks,

bonds or the spot rate of exchange, among many assets. The predictors are usually an array

of financial ratios and macroeconomic variables.

A considerable amount of economic and financial literature has investigated the pre-

dictability of stock returns. Consequently, a number of plausible predictive variables for

stock returns are proposed and well-documented (See Koijen and Nieuwerburgh, 2011, for

the most recent survey on the literature). Nevertheless, there is no clear-cut evidence as to

whether those variables are indeed successful predictors. Rather, there have been heated de-

bates on whether stock returns are predictable, and the jury is still out. Recently, Welch and

Goyal (2008) have argued that stock return prediction based on the predictors suggested in

the literature is poor in terms of both in-sample fit and out-of-sample forecasting.

Arguably, while predictive regression is the main tool for forecasting stock returns, the

predictive regression model has been largely empirically driven and involves several econo-

metric issues. See Phillips (2015) for a summary and recent developments on those issues.

Among those, we restrict our attention to two specific problems, which we believe could be

tackled in a more systematic way. Firstly, martingale difference features of excess returns

are not readily compatible with the highly persistent predictors suggested by the empirical

literature. It is well-documented that time series of financial ratios are often highly persistent
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and could be (nearly) unit root processes. This is a typical problem of unbalanced regres-

sion. Unbalanced regression is difficult to reconcile with the assumptions required for the

conventional regression estimation and could render the usual statistical inference invalid.

See Campbell and Yogo (2006) and Phillips (2014) for more details.

Secondly, there is no clear guidance that explains why a certain set of predictors is in-

cluded or excluded in the predictive regression, and under what circumstances some predic-

tors have predictive power and others do not. Given a large pool of covariates available for

return predictability, selecting the appropriate covariates for a given period certainly helps to

predict the stock return more precisely. However, choosing the right predictors is extremely

difficult in practice. As a result, precision is sacrificed for parsimony in empirical studies, and

quite commonly a single predictor, or only a handful of predictors at most, are used. This

issue is exacerbated by the unstable nature of return predictability over time. The explana-

tory power of predictors appears to be sensitive to the specific sample period. In this sense,

stock return predictability epitomizes two contemporary forecasting challenges: (i) sporadic

predictability of predictors; and (ii) incongruence between in-sample predictive content and

out-of-sample forecasting ability.1 To date, few econometric methods and finance theories

have been devised to successfully address the aforementioned challenges within a unified

framework.

Against this backdrop, this paper employs the highly celebrated LASSO estimation for the

predictive regression in the presence of cointegration among predictors. We are particularly

inspired by (i) LASSO’s capability in model selection, and (ii) cointegration among persistent

predictors that could circumvent the unbalanced regression. As will become clear in our em-

pirical study, there exists at least one cointegrating relationship among persistent predictors

for stock returns, which lends strong support to our approach based on cointegration. Al-

lowing for cointegration is also compatible with many empirical findings that stock returns

might not be predictable in the short run, but predictable in the long run.2

Although predictive regression enables us to analyze the explanatory power of each indi-

vidual predictor, our primary objective is on improving the overall prediction of stock returns

given a set of predictors. Therefore, we focus on the out-of-sample forecasting performance

by predictors selected via the LASSO estimation. In addition, this paper investigates the large

sample properties of the LASSO estimation of the linear predictive regression. We show the

consistency of the LASSO estimator of coefficients on both stationary and nonstationary pre-

dictors within the linear predictive regression framework. Furthermore, in the presence of

cointegration, we derive the limiting distribution of the cointegrating vector under certain

regularity conditions, in contrast with the usual LASSO estimation, in which case the limiting

1See Stock and Watson (1996, 2003) and Rossi (2013).
2Although the unbalanced regression could be tackled by incorporating an accommodating error structure

such as (fractionally) integrated noise, it is not easily compatible with the predictive regression framework and
its related assumptions.
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distribution of the estimator is not readily available. To the best of our knowledge, this paper

is the first work that establishes the limiting distribution for LASSO estimates.

The remainder of this paper is organized as follows. We briefly discuss related literature

in Section 2. Section 3 introduces predictive regression models, and Section 4 discusses the

LASSO selection of relevant predictors within the model framework. In particular, Section

4.1 demonstrates the consistency of the proposed LASSO estimators, and Section 4.2 derives

the limiting distribution of the LASSO estimator of a cointegrating vector. Simulation results

are discussed in section 5. Also, a real application of our methodology is given in Section 6.

Section 7 concludes. All proofs of propositions, lemmas and related regularity conditions are

found in Appendix A.

2 Relevant literature

The interest in forecasting stock returns has been unattenuated in the fields of economics and

finance since the early work of Dow (1920). However, recent survey papers suggest a shift

from finding the appropriate predictors to amalgamating a number of plausible predictors,

in order to yield a better forecast for stock returns (Koijen and Nieuwerburgh, 2011; Rapach

and Zhou, 2013).

Previously, the majority of the literature focused on whether a certain variable has pre-

diction power for stock returns. Based on the present-value relationship between stock prices

and their cash flows, an array of financial variables including financial ratios have been pro-

posed as predictors. Among many others, documented examples are the earnings-price ratio

(Campbell and Shiller, 1988), the yield spread (Fama and Schwert, 1977; Campbell, 1987),

the book-to-market ratio (Fama and French, 1993; Pontiff and Schall, 1998), the short inter-

est (Rapach et al., 2016) and the dividend-payout ratio (Lamont, 1998). In addition, other

types of predictors have followed suit. The assorted macroeconomic variables include the

consumption-wealth ratio (Lettau and Ludvigson, 2001) and the investment rate (Cochrane,

1991). Ang and Bekaert (2007) claimed that the return predictability is visible for a short hori-

zon although it is weak for a long horizon. Welch and Goyal (2008) revisited these predictors

to verify whether they are able to produce a better forecast than the historical mean of stock

returns, but the results do not lend any credence to stock return predictability. Rather, they

conclude that most models are unstable at best.

In many empirical models for analyzing stock return predictability, the return is condi-

tioned on only one predictor. This practice leads to potential model mis-specification and

misleading statistical inference. Most recently, however, along with statistical and economet-

ric development involving new forecasting techniques, the literature has delved into how to

incorporate the large pool of predictors suggested in the literature within a unified frame-

work. This research trend comes with an acknowledgment that these predictors are poten-
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tially useful in forecasting stock returns in one way or another, but their prediction power can

be very unstable. The high dimension of the predictors poses a significant challenge due to

the degrees-of-freedom problem, as noted in Ludvigson and Ng (2007). In addition, temporal

instability of their predictive power renders forecasting extremely difficult (Rossi, 2013). In

this regard, a number of different approaches have been investigated; for instance, dynamic

factor approach (Ludvigson and Ng, 2007), Bayesian averaging (Cremers, 2002), a system of

equations involving vector autoregressive models (Pástor and Stambaugh, 2009) and technical

indicators (Neely et al., 2014).

Our LASSO approach in the presence of cointegration is an addition to this strand of

literature. Since the seminal paper of Tibshirani (1996), the LASSO estimation has gained

popularity in various fields of study. See Fan and Lv (2010) and Tibshirani (2011) for the most

recent development. The wide variety of predictors available for forecasting stock returns

necessitate a wise selection of predictors that capture the quintessential dynamics of future

returns. Moreover, the unstable nature of their prediction power at different time periods

renders covariate selection even more crucial. In this regard, the LASSO approach in this

paper works on both cross-sectional and time-series dimensions.

A few studies have investigated the use of LASSO in the presence of non-stationary vari-

ables. Caner and Knight (2013) proposed a unit root test involving Bridge estimators in order

to differentiate unit root from stationary alternatives. Liao and Phillips (2015) applied the

adaptive LASSO approach to cointegrated system in order to estimate a vector error correc-

tion model (VECM) with an unknown cointegrating rank and unknown transient lag order.

Quite recently, Kock (2016) further discussed the oracle efficiency of the adaptive LASSO in

stationary and non-stationary autoregressions. These papers differ from ours in many as-

pects. First of all, instead of using autoregressive models, our paper focuses on the predictive

regression where the stationary and non-stationary predictors co-exist. Secondly, we allow

for the presence of cointegration and have a different objective from the other studies in the

literature, which leads to a different approach.

Although LASSO has been widely employed in various fields of studies, not much fi-

nancial literature utilises this powerful model selection and estimation tool to address stock

return predictability. Only two recent papers have emerged. Buncic and Tischhauser (2016)

and Li and Tsiakas (2016) suggest that LASSO contributes to better forecasts of stock returns

because it enables researchers to select the most relevant factors among a broad set of pre-

dictors. Both papers are closely related to the works of Ludvigson and Ng (2007) and Neely

et al. (2014). However, both of them fall short in explaining the theoretical grounds behind

their empirical results, and they do not take into account the impact of persistent regressors

on the linear predictive regression. Moreover, in order to achieve their objectives, both Buncic

and Tischhauser (2016) and Li and Tsiakas (2016) imposed coefficient constraints. In contrast,

we do not require any constraint on the sign of coefficients, and the persistence of predictors
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are explicitly considered in the model. In fact, we provide theoretical credence to the LASSO

approach to the linear predictive regression in the presence of persistent predictors.

Our study is also in line with the strand of literature on forecasting under instability based

on the predictive regression (see Rossi, 2013, and references therein). As Timmermann (2006)

duly noted, there are largely two schools of thought about how to improve forecasting when

the underlying model is uncertain. The first suggests employing an approach using various

forecasting combinations, which has been actively investigated (see Elliott et al., 2013; Koo and

Seo, 2015, among many others). The other one considers the entire set of possible predictors

in a unified framework, allowing the data to select the best combination of predictors in an

attempt to search for the best forecasting model. Most literature based on `1-regularization,

including the LASSO, falls under this approach.3 This paper addresses the unstable nature

of stock return predictability by utilising the automated selection of the LASSO at different

points in time by rolling the estimation window within the sample period.

3 Econometric framework: Predictive regression

Our econometric framework is a linear predictive regression in which a large set of condi-

tioning variables is available, but the prediction power of each variable could be unstable.

Some of the conditioning variables could be non-stationary, i.e. I(1) variables and might

be cointegrated. Our model is framed in the context of stock return predictability because

forecasting stock returns epitomizes the issues we are attempting to address: (i) possibly

large set of conditioning variables; (ii) some of them are quite persistent; and (iii) the pre-

diction power of each conditioning variable is unstable. Let us consider the following linear

predictive regression model:

yt = x′t−1β + z′t−1α + ut, (1)

where β ∈ Rk for a fixed k with xt ∼ I(1), and α ∈ Rp for p→ ∞ with zt ∼ I(0). I(q) denotes

an integrated process of order q. The high persistence of xt is compatible with the property

of many commonly used stock return predictors, such as the dividend-price ratio and the

earning-price ratio.4 We use zt in model (1) to represent the other group of less persistent

return predictors, for example the long term bond rate and inflation. See Neely et al. (2014)

and Ludvigson and Ng (2007) for a pool of plausible financial and macroeconomic predictors.

Model (1) is in line with the most recent literature on stock return predictability. It is a

multi-factor model employed in the empirical asset pricing literature. The primary objective

is to estimate the conditional mean of yt, given a mixture of possibly high-dimensional sta-

tionary and fixed number of non-stationary conditioning variables available at time t− 1. In

3The former of the two is pooling forecasts whereas the latter is pooling information. See Timmermann (2006)
for pros and cons of two different approaches.

4Welch and Goyal (2008) showed that many return predictors including the treasury bill rate, the long term
bond yield and the term spread are also highly persistent, with a first order autocorrelation above 0.99.
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the context of the present paper, the prediction objective yt is the rate of return on a broad

market index over the risk free rate, commonly referred to as the equity premium. It is com-

monly accepted that the equity premium displays martingale difference features, whereas

many return predictors are quite persistent. The stationarity feature of the martingale differ-

ence sequence on the left-hand side of model (1) hardly matches with the highly persistent

predictors on the right-hand side. Furthermore, a close examination of the historical data of

various financial ratios reveals a strong co-movement among these persistent variables, which

lends strong credence to the existence of at least one cointegrating relationship among them.

Without the loss of generality in the forecasting context, we assume that there is one coin-

tegrating relationship within xt. Specifically, the cointegrating vector δ and the corresponding

constant c are such that x′tβ = x′tδc. For identification when it comes to estimating δ0 and c0,

we standardize δ such that δ̂ = β̂

‖β̂‖ and ĉ = ‖β̂‖ for some generic norm ‖ · ‖.

4 LASSO selection of predictors

This section examines an automated selection of predictors among many covariates whose

cardinality is even larger than the sample size under the sparsity assumption. Particularly,

we propose a LASSO estimation in which a `1-type penalty is applied for this purpose. Note

that in a matrix form, model (1) can be written as

Y = Xβ + Zα + u. (2)

The LASSO estimator for (β′, α′)′ can be obtained by

(β̂
′
, α̂′)′ = arg min

β,α
‖Y− Xβ− Zα‖2

2
/

n + λ(‖β‖1 + ‖α‖1), (3)

where ‖ · ‖m denotes a `m norm and λ ∼ ln p/
√

n.

Equation (3) describes the usual LASSO objective function regardless of the presence of

a cointegrating relationship. We investigate how the presence of a cointegrating relationship

affects the LASSO estimation approach by reparameterisation. With c = ‖β‖1 and δ = β/c,

Y− Xβ− Zα = u− X(β− β0)− Z(α− α0)

= u− X(δ− δ0)c− Xδ0(c− c0)− Z(α− α0)

= u− X̃√
n
√

n(δ− δ0)−W(c− c0)− Z(α− α0)

= u− D(θ− θ0),

where θ = (
√

nδ′, γ′)′ with γ = (c, α′)′ and D = (X̃
/√

n, G) with X̃ = Xc and G = (W, Z).
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In addition, the `1 penalty terms can be rewritten as

λ(‖β‖1 + ‖α‖1) = λ(‖c‖1 + ‖α‖1) = λ‖γ‖1,

with a given constraint ‖δ‖1 = 1 by construction.

Consequently, in the presence of a cointegrating relationship, the LASSO estimator for θ

can be represented by

θ̂ = arg min
θ,‖δ‖1=1

‖u− D(θ− θ0)‖2
2
/

n + λ‖γ‖1. (4)

Note that (4) is a constrained minimisation problem given that the estimator for θ is obtained

under the constraint, ‖δ‖1 = 1, i.e. the constraint on the parameter space to which δ belongs

is imposed. Also, note that λ‖γ‖1 can be replaced with λ‖θ‖1 without changing the minimi-

sation problem in this set-up. Notably, our approach reframes the stock return predictability

in a variable selection context in such a way that we can use the standard LASSO algorithm

and its variations readily available without any modification.

In what follows, we establish the large sample properties associated with the proposed

LASSO estimator, θ̂ = (
√

nδ̂
′
, γ̂′)′. We start with the consistency of the proposed estimator

and its convergence rate and proceed to the large-sample distribution of the LASSO estimator

for the cointegrating vector δ. All proofs for our theoretical results are provided in Appendix

A with corresponding regularity conditions. It is worth noting that the conditions are quite

general, accounting for time series features of the data and the model in Section 3.

4.1 Consistency and rate of convergence

Proposition 1 LASSO consistently selects all relevant predictors and screens irrelevant covariates

enough to maintain better forecasting performance. Specifically, under regularity conditions A1-A3

specified in Appendix A,

‖θ̂− θ0‖1 = Op

(
s0 ln p√

n

)
, (5)

where s0 is the number of non-zero elements in θ0 and p is allowed to tend to infinity.

Proof. See Appendix A.

Proposition 1 ensures that LASSO can serve as a predictor-selection tool in the linear pre-

dictive regression for forecasting stock returns even when there are two different types of

covariates, either stationary (zt) or nonstationary (xt), and the dimension for zt is potentially

very large. This property is essential for stock return predictability because the number of

plausible return predictors is very large and could be nonstionary (financial ratios) or sta-

tionary (macroeconomic variables). LASSO is an automated method that selects relevant

predictors under a sparsity assumption so as to achieve parsimony without sacrificing preci-
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sion.5 This is more important when the number of observations is relatively small compared

to the number of predictors available.

Proposition 1 shows that the convergence rate for θ̂ is slower than Op(
√

ln p/n), the

usual convergence rate of the LASSO estimator for the linear models, due to the dependence

structure of the data.

4.2 Large sample distribution of an estimator for the cointegrating vector

This section discusses the large sample distribution of the proposed estimator for the cointe-

grating vector, δ. From (3), when ĉ and α̂ are fixed, we can focus on the estimator for δ, the

coefficient associated with X̃ĉ. The objective function (3) becomes

δ̂ = arg min
δ,‖δ‖=1

‖Ỹ− X̃δ‖2
2
/

n, (6)

where Ỹ = Y − Zα̂ and X̃ = Xĉ. It is worth noting that there is no shrinkage on the cointe-

grating vector due to the restriction on the parameter space, ‖δ‖ = 1. This is quite intuitive

because the coefficients constituting the cointegrating vector are not penalised by the usual

LASSO estimation in the presence of a cointegrating relationship. This is more compelling for

the return predictive regression, in which the excess return (prediction objective) is stationary

while some of the predictors are persistent. As seen from (6), we can derive the large sample

distribution of θ̂ based on the standard constrained least squares regression models.

Proposition 2 The large sample distribution of appropriately scaled δ̂ − δ0 can be obtained by the

minimizer of the limit objective function D(b) such that

D(b) = −2c0b′
[∫ 1

0
W (r)dU (r) + Λ

]
+ c2

0b′
∫ 1

0
W (r)W (r)′drb,

with

Λ = lim
n→∞

1
n

n−1

∑
i=1

i−1

∑
j=1

E(ε i−jui+1),

where εt = xt − xt−1 and (W (·), U (·))′ is the weak limit of the partial sum process of (εt, ut)′.

Under regularity conditions A1-A3 specified in Appendix A,

n(δ̂− δ0)
d→ arg min

b:sgn(δ0)′b=−∑j |bj|1{δ0j=0}

D(b). (7)

Proof. See Appendix A.

Proposition 2 allows us to make an inference for the cointegration vector δ. Proposition 2

is nonstandard because there exists a restriction on the parameter space. If it were not for the

5Here, sparsity means that the number of truly relevant predictors is small among many candidate variables.
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restriction on the parameter space, we could obtain the closed-form expression by deriving

the minimizer of the limit objective function D(b) in Proposition 2. Nevertheless, we can eas-

ily simulate the limit distribution for the inference purpose.6 However, we do not provide the

simulated distribution here because our primary objective is on the forecasting improvement

instead of making an inference for the cointegrating vector. Lastly, the conditions required

for Proposition 2 are quite general. For instance, we do not require that the error process is

the martingale difference sequence. It suffices that {εnk} and {νnk} are strong-mixing.

5 Simulation study

In this section, we use a simulation study to investigate the forecasting performance of LASSO

when there exists a mixture of stationary and cointegrated non-stationary predictors.

5.1 Simulation design

For our simulation study, we consider the standard linear predictive regression model out-

lined in (1):

yt = x′t−1β +
(

1 z′t−1

)(0.15

α

)
+ ut, (8)

where the dimension of regressors (x′t, z′t)
′ is fixed, xt ∼ I(1) and zt ∼ I(0). We simulate xt

and zt from the following processes:

∆xt =
(

0.2 0.5 0 0
)′ (

1 −1 0 0
)

xt−1 + εx,t, (9)

zt = 0.6 I6 zt−1 + εz,t. (10)

Note that (9) is the usual vector error correction representation in which the first part rep-

resents a k × ` loading matrix (`: cointegrating rank) while the second part denotes the

cointegrating vector. Hence, xt is a 4-dimensional I(1) process with cointegrating rank 1

and cointegrating vector δ = (1, −1, 0, 0)′. zt is a 6-dimensional stationary AR(1) pro-

cess. Coefficients in the predictive regression model (1) are set to be β = cδ = 0.4δ, and

α = (−0.1, 0.02, 0.7, 0, 0, 0)′. All of the error terms (ut, εx,t, εz,t) are i.i.d N (0, 1) and uncor-

related contemporaneously.

We start with the simple data generating process (DGP) outlined in equations (8)-(10) by

maintaining a modest level of autocorrelation in the stationary variables zt. The strength

of persistence in the non-stationary variables xt is also relatively weak. Parameters in this

6The limit distribution cannot be tabulated as it is not asymptotically pivotal but can be simulated. In partic-
ular, the restriction on b can be imposed by replacing δ0j with δ̃j = δ̂j1{|δ̂j |≥cn} for some cn → 0 and n× cn → ∞.

Due to the super-consistent convergence rate of δ̂, this event is equivalent to the restriction on the parameter space
with a probability approaching one.
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DGP are chosen such that we preserve a weak dependence structure. Figure 1 shows one

simulated sample path of {yt, x1,t, x2,t, z1,t, z2,t, z3,t} with T = 1000 observations. Panel (a)

shows that {z1,t, z2,t, z3,t} display the usual stationary time series, whereas I(1) variables, x1,t

and x2,t are cointegrated with the cointegrating vector (1,−1)′ in panel (b). Panel (c) of Figure

1 confirms that the I(1) variables xt affect yt through the cointegrating relationship, and hence

yt is a stationary process.

Figure 1: One of the simulated sample paths, T = 1000
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5.2 Estimation

We consider five different estimation methods. We omit the constant term henceforth for ease

of notation, although the constant is included in our simulation study. Firstly, we use the OLS

to estimate (β′, α′)′ and evaluate the one-step-ahead forecasting error. Secondly, we predict

yt using its historical average ŷT+1 = 1
T ∑T

i=1 yi. The third method is to estimate yt using an

AR(1) model:

yt = ρ yt−1 + ut. (11)
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For the fourth method, we employ a forecast combination à la Timmermann (2006). More

specifically, we compute the combined forecast, ŷT+1, as an equally weighted average of all

forecasts that are separately obtained from distinctive linear predictive regression models,

each conditioning on only one predictor:

ŷT+1 =
1
m

M

∑
m=1

ŷm
T+1, (12)

where M is the sum of dim(xt) and dim(zt), and ŷm
T+1 is a forecast based on a bivariate linear

predictive regression that conditions on m-th predictor only.

Finally, we apply a standard LASSO method with the following objective function:

arg min
β,α

{
1
n

n

∑
t=1

(
yt − x′t−1β− z′t−1α

)2
+ λ‖β‖1 + λ‖α‖1

}
, (13)

where ‖ · ‖1 is the L1-norm. The penalty term λ is estimated using the cross validation

algorithm given by Qian et al. (2013). We present results for two estimated λ’s: the one that

minimizes the cross-validated error loss (LASSOmin) as well as the largest λ that produces an

error that is smaller than the minimized error loss plus its one standard deviation (LASSO1se).

The latter choice is meant to mitigate in-sample overfitting for LASSO by selecting a stronger

penalty term.

We consider different sample sizes to evaluate the forecasting performance of each method.

For T = 100, 200, 400, and 1000, we compare the one-step-ahead forecasting errors of the four

estimation methods.

To evaluate the comparative forecasting performance between different methods, we con-

sider two measures: forecasting mean squared error (FMSE) and out-of-sample R2. The

former is defined as the expected squared difference between the actual realisation and

the one-step-ahead forecast: FMSE := E[yT+1 − ŷT+1]
2. The latter is defined as R2:=1 −

FMSEi/FMSEOLS for each model i. We set the OLS method as our benchmark when calcu-

lating the out-of-sample R2 because we want our simulation study to reflect the predictive

regression on return predictability of the financial ratios studied in our empirical study.

The choice of estimation methods considered in this paper merits further explanation. Not

only are those methods employed in many empirical studies but also they can shed light on

the trade-off between estimation bias and statistical uncertainty around estimation embedded

in forecasts. We note that the OLS and LASSO estimation methods are based on the correct

specification while the historical average (the constant model henceforth) and AR model are

misspecified. We intend to investigate the impact of the bias induced by the LASSO estimation

in comparison with the constant and AR models and the reduction in the estimation variance

LASSO could achieve in comparison with the OLS. We choose the AR model instead of the

random walk model because the dependent variable {yt} is stationary, and hence the random
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Table 1: Forecasting performance of different model strategies

T OLS Average AR(1) F-comb LASSOmin LASSO1se

FMSE

100 2.1118 2.5081 2.1963 2.3719 2.0544 2.0055
200 2.0851 2.4927 2.1535 2.3862 2.0579 1.9936
400 2.1003 2.4787 2.2089 2.3930 2.0869 2.0277

1000 1.9272 2.3709 2.0333 2.2741 1.9181 1.8586

Out-of-sample R2

100 -0.1877 -0.0400 -0.1232 0.0272 0.0503
200 -0.1955 -0.0328 -0.1444 0.0130 0.0439
400 -0.1801 -0.0517 -0.1394 0.0064 0.0346

1000 -0.2303 -0.0551 -0.1800 0.0047 0.0356

a The out-of-sample R2 is defined as R2 = 1− FMSEi/FMSEOLS for each model i.

walk is not compatible with the simulated data. Furthermore, the forecasting performance

of the random walk model is quite poor. Finally, we include forecast combination as one of

the competing model strategies because it has been widely recognized to improve forecast

performance compared to the individual model (Timmermann, 2006; Rapach et al., 2010).

Similar to LASSO, the combining forecast model approach alleviate the impact of model

uncertainty and parameter instability.

5.3 Discussion on the simulation results

Table 1 presents FMSE and out-of-sample R2 of the forecasting strategies based on 1000 rep-

etitions. Overall, both LASSOmin and LASSO1se estimations always produce smaller FMSEs

than the benchmark OLS forecasts across four different sample sizes, and hence positive val-

ues of the out-of-sample R2. On the other hand, the historical average, AR(1) model and

forecast combination always lead to inferior forecasting performance compared to the OLS

benchmark. In particular, the forecast combination does not appear to be successful in this

case. One possible reason is that the data generating process (DGP) has a stable dependence

structure. We can infer that the bias induced by adopting the LASSO would be small whereas

the reduction in the estimation variance would be substantial.

We conjecture that the LASSO approach renders the presence of a cointegrating rela-

tionship conspicuous due to the shrinkage imposed on the small or negligible but nonzero

coefficients, which could lead to better forecasting performance. Therefore, as the number of

observations increases, the forecasting performance based on the OLS gets closer to that of

the LASSO. This is confirmed from Table 1. When we have a small sample size T = 100, the

improvement in the FMSE of LASSO1se over the OLS benchmark, as measured by the out-of-

13



sample R2, is 5%. However, as the sample size increases to T = 1000, the out-of-sample R2 of

LASSO1se reduces to 3.56%.

Finally, we note that LASSO1se performs better than LASSOmin, which corroborates that

the LASSO in some cases suffers from the well-known overfitting issue. Overfitting is a

data-dependent problem. One solution recommended by Qian et al. (2013) is to use a larger

penalty term λ than the one that minimizes the cross-validated error, which is what we

employed in the LASSO1se case. In what follows, we use an alternative DGP to conduct the

same simulation exercise, in which case overfitting does not appear to have much influence

on the forecasting performance of LASSO.

5.4 Robustness: Alternative DGPs

We consider an alternative DGP with richer dynamics to examine the robustness of our sim-

ulation study. This might be more compatible with the financial or macro data observed in

reality. The specification of the alternative DGP is as follows.

∆xt =
(

0 0.3 0 0.2
)′ (

1 −0.5 0 0
)

xt−1 + εx,t, (14a)

zt =



0.3 0 0 0 0 0

0 1.31 0.29 0.12 0.04 0

0 −0.21 1.25 −0.24 0.04 0

0 0.07 0.03 1.16 0.01 0

0 0.08 0.27 −0.07 1.25 0

0 0 0 0 0 0.3


zt−1

+



0 0 0 0 0 0

0 −0.35 −0.28 −0.07 −0.02 0

0 0.19 −0.26 0.24 −0.05 0

0 −0.07 −0.02 −0.16 0.01 0

0 −0.13 −0.23 0.03 −0.31 0

0 0 0 0 0 0


zt−2 + εz,t,

(14b)

yt = x′t−1

(
0.3 −0.15 0 0

)′
+ z′t−1

(
−0.1 0 0.02 0.4 0 −0.2

)′
+ ut. (14c)

The most distinct feature of this DGP is that the stationary variables zt follows a VAR(2)

process with a more complicated dependence structure, which is partly taken from an esti-

mated VAR(2) process from US macroeconomic data (see Martin et al., 2012, p. 485, example

13.19). Therefore, this DGP should well represent data obtained from the real economy. We

plot one simulated sample path with size T = 1000 in Figure 2. Note that the cointegrating

vector between x1,t and x2,t is (1, −0.5)′. Panel (b) of Figure 2 shows that x1,t− 0.5x2,t exhibits

stationary time series characteristics, so does yt depicted in panel (c).
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Figure 2: One of the simulated sample paths, T = 1000
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Table 2: Forecasting performance of different model strategies

T OLS Average AR(1) F-comb LASSOmin LASSO1se

FMSE

100 1.6756 7.1397 2.3330 4.4096 1.5801 1.6042
200 1.4215 7.6931 2.2635 5.0832 1.3802 1.3838
400 1.4536 8.7265 2.4273 6.0144 1.4460 1.4469

1000 1.2486 7.9195 2.1575 5.6196 1.2406 1.2218

Out-of-sample R2

100 -3.2609 -0.3923 -1.6316 0.0570 0.0427
200 -4.4120 -0.5924 -2.5759 0.0291 0.0265
400 -5.0032 -0.6689 -3.1376 0.0052 0.0046

1000 -5.3428 -0.7280 -3.5008 0.0064 0.0214

a The out-of-sample R2 is defined as R2 = 1− FMSEi/FMSEOLS for each model i.
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Forecasting evaluation is tabulated in Table 2. As seen from Table 2, the main results

are quite similar to what we observe from using the previous DGP discussed in Section

5.3. Compared with the OLS benchmark, LASSOmin and LASSO1se always generate smaller

FMSE and subsequently positive out-of-sample R2. The mis-specification induced by using

historical average or the AR(1) model can be very costly in this case. The FMSE is at least

tripled by using the historical average as the one-step-ahead forecast. Results based on the

forecasting combination are disappointing, and this is consistent with our expectation given

that the forecasting combination completely ignores the presence of the dependence structure

among predictors.

The comparison between LASSOmin and LASSO1se provides an interesting contrast to the

previous DGP. More often than not, LASSOmin produces a slightly smaller FMSE than the

LASSO1se model, indicating that the in-sample overfitting issue is less manifest for this DGP

with a more complex dependence structure.

One advantage of the LASSO approach is that we allow the dimension of the stationary

variables zt, p, to be arbitrarily large. For instance, p could be even larger than the sample size

T, in which case traditional OLS estimation is not feasible. In the previous two DGPs, we set

p = 6 and k = 4. We investigate whether a higher dimension of the stationary predictors has

any impact on the forecasting performance of LASSO compared with alternative forecasting

strategies. For simplicity, we maintain the dynamics of the DGP as outlined by equations 14,

and add a simple AR(1) process with autocorrelation 0.3 to the stationary process zt. These

stationary AR(1) processes enter yt with coefficient 0.1.

We tabulate the FMSE of different model strategies in Table 3 for three different values

of p: 12, 20 and 50. The smallest FMSE in each row is in bold letters. The results observed

previously are largely preserved when we increase the dimension of the stationary predictors

zt. The two LASSO estimates always produce the most accurate forecast in terms of FMSE.

The percentage improvement of LASSO relative to the OLS benchmark is always larger when

the sample size is small. Notably, as p increases, all model specifications considered here

generate larger forecast errors. The historical average, AR(1) model and forecast combination

are all mis-specified and hence lead to much larger forecast errors.

6 Stock return predictability

Stock return predictability has been a controversial subject in the finance literature. Re-

searchers have not only been constantly seeking new predictors, but also exploiting inno-

vative ways of extracting information from the existing set of predictors (see, for example

Buncic and Tischhauser, 2016; Rapach and Zhou, 2013; Neely et al., 2014). Welch and Goyal

(2008) conducted one of the most influential studies in this area, reviewing the usefulness

and stability of many commonly used predictors. We use the dataset examined in Welch
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Table 3: FMSE different model strategies for different values of p

T OLS Average AR(1) F-comb LASSOmin LASSO1se

p = 12

100 1.8520 7.8187 2.5614 5.8080 1.6774 1.6808
200 1.5505 7.6690 2.3598 5.9267 1.4978 1.4718
400 1.5943 8.0177 2.3667 6.4681 1.5811 1.5467

1000 1.5004 8.6363 2.5141 7.0918 1.4918 1.4645

p = 20

100 2.0887 7.1947 2.3830 5.8983 1.7752 1.7200
200 1.7803 8.0662 2.4802 6.8046 1.6843 1.5966
400 1.6883 8.0135 2.3819 6.8941 1.6634 1.6212

1000 1.6096 8.6388 2.2921 7.4974 1.6017 1.5720

p = 50

100 4.1635 8.2801 3.0859 7.6885 2.7298 2.5970
200 2.5218 7.7649 2.7705 7.2337 2.2484 2.1318
400 2.0956 8.3824 2.5824 7.8424 2.0349 1.9049

1000 2.1310 9.0421 2.7149 8.4954 2.1110 2.0017

and Goyal (2008) and demonstrate how LASSO estimation could improve the predictability

of stock returns via exploring cointegration among the predictors.

6.1 Data

We follow the mainstream literature on forecasting equity premium and use the 14 predictors

from Welch and Goyal (2008). Table 6.1 presents a brief description of the predictors as well

as their estimated first-order autocorrelation coefficients over the entire sample period from

January 1945 to December 2012 with a monthly frequency. The dependent variable of interest

is the equity premium yt, which is defined as the difference between the compounded return

on the S&P 500 index and the Treasury bill rate. Most of the predictors are financial or

macroeconomic variables. As shown in Table 6.1, the majority of these predictors are highly

persistent, with 11 out of 14 variables having a first order autocorrelation coefficient higher

than 0.95. The three most non-persistent variables are stock index variance, inflation and

government bond return.

In the benchmark case, we estimate the predictive regression model using a 20-year rolling

window to allow for possible parameter instability during the sample period 1945:01-2012:12.

Hence the out-of-sample prediction of equity premium starts from 1965:01. We conduct a

robustness analysis using 10-year and 30-year rolling windows. Figure 3 plots the estimated

AR(1) coefficients for each predictor and equity premium (EQ) using 20-year rolling window.
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Table 4: Variable definitions and estimated first order autocorrelation

Predictor Definition Auto.corr(1)

d/p dividend price ratio: the difference between the log
of dividends and the log of prices

0.9940

d/y dividend yield: the difference between the log of
dividends and the log of lagged prices

0.9940

e/p earning price ratio: the difference between the log of
earning and the log of prices

0.9908

d/e dividend payout ratio: the difference between the
log of dividends and the log of earnings

0.9854

b/m book-to-market ratio: the ratio of book value to
market value for the Dow Jones Industrial Average

0.9926

ntis net equity expansion: the ratio of 12-month moving
sums of net issues by NYSE listed stocks over the
total end-of-year market capitalization of NYSE
stocks

0.9757

tbl Treasury bill rates: the 3-month Treasury bill rates 0.9891

lty long-term yield: long-term government bond yield 0.9935

tms term spread: the difference between the long term
bond yield and the Treasury bill rate

0.9565

d f y default yield spread: the difference between
Moody’s BAA and AAA-rated corporate bond
yields

0.9720

d f r default return spread: the difference between the
returns of long-term corporate bonds and long-term
government bonds

0.9726

svar stock variance: the sum of squared daily returns on
the S&P 500 index

0.4716

in f l inflation: inflation of the Consumer Price Index for
all urban consumers

0.5268

ltr long-term return: the rate of returns of long term
government bonds

0.0476

Reference: Anderson et al. (2015)
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It is evident that not only many predictors exhibit a high persistence level but also the time

series dependence structure is changing throughout the forecasting period.

Given the salient feature of the predictors supported by Table and Figure 3, we expect to

observe certain cointegrating relationships among the persistent variables. For example, the

dividend price ratio (d/p) and dividend yield (d/y) should have a stable long-run relation-

ship in theory. If such a cointegrating relationship exists, it would fit with our theoretical

framework nicely. Therefore, we conduct the tests proposed by Johansen (1991, 1995) and

Poskitt (2000) to examine the possible cointegration among the persistent variables. We ex-

clude dividend payout ratio (d/e) and long-term yield (lty) when estimating the models in

order to avoid multi-collinearity. The cointegration tests are performed on the remaining 9

persistent predictors.

Figure 4 shows the number of cointegrating relationships (i.e. cointegrating rank) through-

out the sample period using a 20-year window.7 The blue solid line denotes the cointegrating

rank selected using the Johansen test (Johansen, 1991, 1995), and the red dashed line denotes

the cointegrating rank selected using the non-parametric method of Poskitt (2000). Johansen

test based on estimating a vector error correction model is one of the most widely used tests

for cointegration among multiple time series. However, it has also been commonly acknowl-

edged in the literature that this test suffers substantially from the curse of dimensionality

(Gonzalo and Pitarakis, 1999). In particular, the Johansen test tends to overestimate the coin-

tegrating rank, which is reflected in Figure 4. Among 9 persistent predictors, the Johansen

test consistently finds at least 3 cointegrating relationships, whereas the more conservative

Poskitt (2000) test only finds cointegrating rank 1 or 2. When only d/p and d/y are included

in the tests, we always conclude that these two variables are cointegrated.

6.2 Forecasting comparison

We estimate the same set of models as in the simulation study in Section 5. The benchmark

model is estimated using OLS. Note that the historical average model uses only observations

in the given rolling window instead of the entire past history from the beginning of the

sample period. The AR(1) model, forecast combination, LASSOmin and LASSO1se models

have the same interpretations as before. The FMSE and out-of-sample R2 are tabulated in

Tables 5 and 6, respectively. Following Welch and Goyal (2008), we first consider the generic

“kitchen sink” model, where all of the predictors listed in Table 6.1 are included except d/e

and lty. In addition, we estimate a simplified model that contains the three non-persistent

predictors (svar, in f l and ltr) and only two strongly cointegrated persistent predictors d/p

and d/y.

Tables 5 and 6 show that in terms of the overall performance, the LASSOmin model outper-

7The testing outcome based on 10-year and 30-year windows is qualitatively similar. These results are available
upon request.
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Figure 3: AR(1) coefficients over the 20-year rolling window

1965 1975 1985 1995 20052012
0.9

0.95

1

1.05
d/p

1965 1975 1985 1995 20052012
0.9

0.95

1

1.05
d/y

1965 1975 1985 1995 20052012
0.95

1

1.05
e/p

1965 1975 1985 1995 20052012
0.95

1

1.05
tbl

1965 1975 1985 1995 20052012
0.95

1

1.05
lty

1965 1975 1985 1995 20052012
0.9

0.95

1

1.05

1.1
d/e

1965 1975 1985 1995 20052012
0.9

0.95

1

1.05

1.1
b/m

1965 1975 1985 1995 20052012
0.85

0.9

0.95

1

ntis

1965 1975 1985 1995 20052012
0.85

0.9

0.95

1

tms

1965 1975 1985 1995 20052012
0.9

0.95

1

1.05

1.1

dfy

1965 1975 1985 1995 20052012
0.9

0.95

1
dfr

1965 1975 1985 1995 20052012
0

0.5

1

svar

1965 1975 1985 1995 20052012

0.4

0.6

0.8
infl

1965 1975 1985 1995 20052012

A
R

(1
)

-0.1

0

0.1

0.2

ltr

1965 1975 1985 1995 20052012

A
R

(1
)

-0.1

0

0.1

0.2

EQ

20



Table 5: Comparison of FMSE for different model strategies

window OLS Average AR(1) F-comb LASSOmin LASSO1se

Kitchen sink

10-year 0.002089 0.001884† 0.001900 0.001803∗∗ 0.001831∗∗ 0.001859∗

20-year 0.002046 0.002050 0.002036 0.001929 0.001928† 0.002014
30-year 0.002035 0.002051 0.002042 0.001956 0.001968 0.002029

Only d/p and d/y

10-year 0.001909 0.001884 0.001900 0.001808 0.001799† 0.001862
20-year 0.001914 0.002050 0.002036 0.001921 0.001866 0.002022
30-year 0.001895 0.002051 0.002042 0.001931 0.001892 0.002026

a Bold letters indicate the model specification with the smallest forecast mean squared error in each row.
b Significance levels of the Giacomini and White (2006) test for conditional predictive ability against the OLS

alternative: † : 10%, ∗ : 5%, ∗∗ : 1%.
c Colored blocks represent superior model specifications compared to others using the Hansen (2005) test

for superior predictive ability.

Table 6: Comparison of out-of-sample R2 for different model strategies

window Average AR(1) F-comb LASSOmin LASSO1se

Kitchen sink

10-year 0.098079 0.090310 0.137113 0.123380 0.110225
20-year -0.001966 0.004560 0.056839 0.057558 0.015609
30-year -0.007684 -0.003416 0.039092 0.033139 0.002955

Only d/p and d/y

10-year 0.012927 0.004424 0.052771 0.057273 0.024433
20-year -0.071145 -0.064169 -0.003850 0.024845 -0.056772
30-year -0.082182 -0.077595 -0.019161 0.001746 -0.069085

a The out-of-sample R2 is defined as R2 = 1− FMSEi/FMSEOLS for each model i.
b Bold letters indicate the model specification that produces the largest out-of-sample R2 in each row.
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Figure 4: Test for cointegration using a 20-year rolling window
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forms all other model specifications. The LASSOmin model most often produces the smallest

one-step-ahead FMSE and hence the highest out-of-sample R2 across the 3 different win-

dow sizes considered. The improvement in out-of-sample R2 can be as large as 12% over

the kitchen sink OLS model. The LASSO1se model also performs well in the kitchen sink

case. However, it often fails to generate better predictions than the OLS benchmark when the

persistent predictors other than d/p and d/y are excluded from the model. Forecast combina-

tion produces the smallest FMSE using 10-year and 30-year windows in the kitchen sink case

but fails to improve forecast accuracy upon the OLS benchmark using 20-year and 30-year

windows in the simplified case with two persistent predictors.

We conduct the Giacomini and White (2006) test for conditional predictive ability on the

one-step-ahead FMSE against the OLS benchmark, indicating the significance levels in Table 5.

At the 10% level, the LASSOmin model produces a significantly better one-step-ahead forecast

than the corresponding OLS alternative using 10-year and 20-year windows for the kitchen

sink specification, also using a 10-year window for the parsimonious two persistent predictors

case. The forecast combination and LASSO1se model also perform significantly better than the

OLS benchmark 10-year kitchen sink model. The Hansen (2005) test for superior predictive

ability leads us to similar conclusion. For each forecasting model i, we test the null that

H0 : FMSEi ≤ FMSEj, for j 6= i, j ∈ J ,

where J contains all models considered here. We highlight in purple blocks the cases, where

H0 cannot be rejected at 5% significance level in Table 5. In all cases we fail to reject that

LASSOmin model produces a one-step-ahead FMSE which is smaller than or equal to the
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FMSE generated from all alternative models. In the kitchen sink case, forecast combination

is equally good as the LASSOmin model in the statistical sense. However, when we keep two

persistent predictors in the model, both the OLS and LASSOmin models produces more accu-

rate one-step-ahead forecasts than forecast combination using 20-year and 30-year windows.

Overall LASSOmin model consistently outperforms most of the alternative model specifica-

tions considered here.

6.3 Robustness analysis

The tests for cointegration rank shown in Figure 4 suggest that among the 8 persistent pre-

dictors, there are usually more than one cointegration relationships. Although our modelling

framework assumes a single cointegrating vector, the case of multiple cointegration relation-

ships is easily compatible. Suppose the two normalised cointegrating vectors are δ1 and δ2,

with the normalisation constants c1 and c2. The fact that we are considering one-equation

predictive regression means that β = c1δ1 + c2δ2. In other words, instead of estimating the

two cointegrating relationships separately, we can only identify a linear combination of them

in β. The same rule applies to models with higher cointegrating ranks among the persistent

predictors.

This is exactly the case in our data set for the stock return prediction. If multiple cointe-

gration relationships exist in a given estimation window, the LASSO estimates of the linear

combination of the cointegrating vectors are still consistent. Furthermore, all the asymptotic

properties of the LASSO estimates presented in Section 4 still hold. We plot the LASSO es-

timates of all 12 coefficients using the kitchen sink model with a 20-year rolling window in

Figures 5 and 6. An estimated coefficient of 0 indicates that the LASSOmin model drops that

coefficient from the predictive regression model. Interestingly, the first two panels of Figure

5 show that d/p and d/y do not always have a (1, −1) cointegration relationship due to the

existence of other persistent predictors in the model. There is also an evident structural break

in early 1996, after which roughly half of the predictors are dropped from the predictive re-

gression model by LASSO. Only the earnings price ratio e/p, stock variance svar and inflation

in f l appear relevant in most of the windows after early 1996.

Figures 5 and 6 also show that the sign of the estimated coefficients is changing in different

parts of the sample. For instance, the earnings price ratio e/p is positively related to the equity

premium prior to 1975 or after 1995, but negatively correlated from 1975 to 1995. This reflects

the changing nature of stock return predictability through time. We observe a consistent sign

in that a higher Treasury bill rate tbl or inflation in f l always leads to a lower equity premium,

and a higher dividend price ratio d/p, default yield spread d f y or long-term return ltr leads

to higher premium.

We depict the NBER business cycle dates in Figures 5 and 6 to investigate whether the

economy being in expansion or recession has any systematic impact on the predictive power

23



Figure 5: Estimated coefficients using LASSOmin with all persistent predictors overlapped
with business cycle (20-year window)
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Figure 6: Estimated coefficients using LASSOmin with all persistent predictors overlapped
with business cycle (20-year window)
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Table 7: Comparison of FMSE for different model strategies using sample 1927:01–2012:12

window OLS Average AR(1) F-comb LASSOmin LASSO1se

Kitchen sink

10-year 0.002384 0.002146† 0.002196 0.002056∗∗ 0.002116∗∗ 0.002127†

20-year 0.001941 0.001892 0.001877 0.001763† 0.001746∗∗ 0.001846
30-year 0.001857 0.001980 0.001956 0.001825 0.001784† 0.001939

Only d/p and d/y

10-year 0.002157 0.002146 0.002196 0.002053 0.002048 0.002128
20-year 0.001729 0.001892 0.001877 0.001746 0.001690 0.001852
30-year 0.001737 0.001980 0.001956 0.001807 0.001733 0.001940

a Bold letters indicate the model specification with the smallest forecast mean squared error in each row.
b Significance levels of Giacomini and White (2006) test for conditional predictive ability against the OLS

alternative: † : 10%, ∗ : 5%, ∗∗ : 1%.
c Colored blocks represent superior model specifications using the Hansen (2005) test for superior predictive

ability.

of the regressors. The recession dates are shaded in color. There does not appear to be a stable

relationship between business cycle and the relevance of each predictor. The results shown

above demonstrate the sporadic relationship between equity premium and the predictors

commonly used in the literature, which emphasizes the need to use LASSO to “auto-select”

the most relevant and important predictors given different estimation windows to achieve the

best forecasting performance.

Finally, we examine the robustness of the forecasting results using the entire data set of

Welch and Goyal (2008) starting from January 1927. The FMSE of the completing models

under consideration is tabulated in Table 7. Compared with Table 5, most of the results are

qualitatively similar. Overall, the LASSO model with λ chosen as the one that minimizes

the cross-validated error (LASSOmin) performs the best. The Hansen (2005) test for superior

predictive ability always ranks LASSOmin model as one of the two best model specifications

for forecasting equity premium. In general, we can conclude that LASSO has been successful

in dealing with the sporadic relationship between the predictors and the prediction objective.

Cointegration among persistent predictors is utilized by LASSO in the estimation, which leads

to superior forecasting performance.

7 Conclusion

This paper considers the use of LASSO in a predictive regression for stock returns in the pres-

ence of cointegration relationships among the persistent predictors. We show that, asymp-

totically, LASSO yields a consistent estimator of the coefficients, including the cointegrating

vector. We also provide the asymptotic distribution of the cointegrating vector, which could
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be used for statistical inference. Both the simulation studies and an application to the equity

premium prediction data show that the proposed LASSO approach leads to superior forecast-

ing performance relative to the commonly used OLS kitchen sink model and the historical

average in most cases.

Stock return predictability has long been debated in the finance literature. The LASSO

approach we proposed here has a few desirable properties. Firstly, as pointed out by Welch

and Goyal (2008), although a large pool of predictors has been suggested by numerous stud-

ies, most predictors do not have a stable predictive power over different parts of the sample

period. This is not surprising from an econometric point of view, as the stock return dis-

plays stationary martingale difference features, while many predictors recommended by the

existing literature are highly persistent. We address this issue of unbalanced regression by

incorporating cointegration relationships among the persistent predictors. Another challenge

many practitioners face is how to select the most relevant predictors from the large set of

available variables. This is particularly difficult given the sporadic relationship between the

stock return and those predictors. The variable selection function of the LASSO tackles this

issue nicely. Finally, our set of assumptions required for the consistency of the LASSO es-

timator allows the dimension of the stationary predictors to be arbitrarily large. It is still

feasible to implement the LASSO when the number of stationary predictors is higher than

the sample size, whereas this cannot be done with the traditional OLS. Thus, the “curse of

dimensionality” is trivial for the LASSO estimator.

To the best of our knowledge, our paper is the first to study the statistical properties of

LASSO estimates of predictive regression in the presence of cointegration. We should em-

phasize that our methodology does not exclude other ways of improving the predictability

of stock returns, for example, bringing in other macroeconomic variables (Buncic and Tis-

chhauser, 2016) and technical indicators (Neely et al., 2014) and imposing constraints on the

return forecasts and/or estimated coefficients (Campbell and Thompson, 2008). As docu-

mented by Buncic and Tischhauser (2016) and Li and Tsiakas (2016), combining additional

information and parameter constraints with LASSO would further improve the predictability

of stock returns.
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A Proofs

For consistency, we need the following set of assumptions.

Assumptions

A1 The parameter space for γ is compact and ‖δ‖1 = 1 for all δ.

A2 The compatibility condition is satisfied for the set S0 where S0 is the support of parameter

variables, θ0, i.e. S0 := {j : θ0
j 6= 0} for θ. That is, for some positive constant φ0 and all

parameters θ satisfying ‖θSc
0
‖1 ≤ 3|θS0‖1,

‖θS0‖2
1 ≤

(
θ′Σ̂θ

)
s0/φ2

where s0 = |S0| and Σ̂ is the appropriately scaled Gram.

A3 Let nonstationary predictors and stationary predictors be xt = ∑[nt]
j=1 εnj and ztj for j =

1, ..., p where p → ∞. Also, let the error process in (1) be ut = ∑[nt]
j=1 νnj. Then,

{
εnj
}

,{
νnj
}

, and
{

ztj
}

j=1,...,p be centered α-mixing sequences satisfying the following: for some

positive γ1, γ2 > 1, b, and c,

α (m) ≤ exp (−cmγ1)

P
{∣∣ztj

∣∣ > s
}
≤ H (s) := exp

(
1− (s/b)γ2

)
for all j (15)

γ =
(

γ−1
1 + γ−1

2

)−1
< 1,

ln p = O
(

nγ1∧(1−2γ1(1−γ)/γ)
)

. (16)

Remark 1 Assumption A1 is concerned with restrictions on the parameter space. Assumption A2 is

standard for the large sample theory for the LASSO estimation. Assumption A3 is a technical condition

required for Lemmas 1 and 2. Notably, Assumption A3 implies Assumption 1 in Hansen (1992), which

ensures weak convergence of the sum of the product of xt and ut in (1) to a stochastic integral.

A.1 Propositions

Proof of Proposition 1. Since, by definition,

‖u− D(θ̂− θ0)‖2
2
/

n + λ‖γ̂‖1 ≤ ‖u‖2
2
/

n + λ‖γ0‖1,

rearranging the above equation yields

‖D(θ̂− θ0)‖2
2
/

n + λ‖γ̂‖1 ≤2u′D(θ̂− θ0)
/

n + λ‖γ0‖1

(θ̂− θ0)′
D′D

n
(θ̂− θ0) + λ‖γ̂‖1 ≤2u′D(θ̂− θ0)

/
n + λ‖γ0‖1 (17)
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We start with the first term of the right hand side in (17). Given A1 (i.e. c belongs to a compact

parameter space), ĉ = Op(1) and u′X/n = n−1 ∑n
t=1 utxt−1

d→
∫ 1

0 W (r)dU (r) = Op(1). These

and Lemma 1 imply that there exists λ̃ such that

Pr
{

2|u′D|∞
/

n ≤ λ̃
}
→ 1 w.p.1,

u′D
/

n =
(

u′X̃
/

n
√

n u′G
/

n
)

where λ̃−1 = O(
√

n/ ln p) and hence,

2|u′D(θ̂− θ0)|∞
/

n ≤ λ̃‖γ̂− γ0‖1 + Op(1)‖δ̂− δ0‖1

due to Lemma 1 and Hölder inequality. Therefore, regarding (17), for λ ≥ 2λ̃,

2‖D(θ̂− θ0)‖2
2
/

n + 2λ‖γ̂‖1 ≤ λ‖γ̂− γ0‖1 + 2λ‖γ0‖1 + |Op(1)|‖δ̂− δ0‖1

Note that due to the triangle inequality,

‖γ̂‖1 = ‖γ̂S0
‖1 + ‖γ̂Sc

0
‖1 ≥ ‖γ0

S0
‖1 − ‖γ̂S0

− γ0
S0
‖1 + ‖γ̂Sc

0
‖1

where S0 is the support of parameter variables, γ0, i.e. S0 := {j : γ0
j 6= 0} for γ and by

construction,

‖γ̂− γ0‖1 = ‖γ̂S0
− γ0

S0
‖1 + ‖γ̂Sc

0
‖1.

Then,

2‖D(θ̂− θ0)‖2
2
/

n + λ‖γ̂Sc
0
‖1 ≤ 3λ‖γ̂S0

− γ0
S0
‖1 + Op(

√
n−1

)‖
√

n(δ̂− δ0)‖1 ≤ 3λ‖θ̂0
S∗ − θ0

S∗‖1,

(18)

where S∗ is the index set combining S0 and indexes for δ.

Given the compatibility condition (A2), there exists some positive constant φ0 such that

‖θ̂S0 − θ0
S0
‖2

1 ≤ ‖D(θ̂− θ0)‖2
2s0(λ, θ)

/
nφ2

0

= (θ̂− θ0)′
D′D

n
(θ̂− θ0)s0(λ, θ)

/
φ2

0. (19)
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where s0(λ, θ) denotes cardinality of the index set S∗ for θ, i.e. s0 = |S∗|. Then,

2‖D(θ̂− θ0)‖2
2
/

n + λ‖θ̂− θ0‖1

=2‖D(θ̂− θ0)‖2
2
/

n + λ‖θ̂S0 − θ0
S0
‖1 + λ‖θ̂Sc

0
‖1

≤4λ‖θ̂S0 − θ0
S0
‖1

≤4λ
√

s0(λ, θ)‖D(θ̂− θ0)‖2
/√

nφ0

≤‖D(θ̂− θ0)‖2
2
/

n + 4λ2s0(λ, θ)
/

φ2
0

The first inequality comes from (18), the second inequality is due to (19) and finally, the last

inequality uses 4uv ≤ u2 + 4v2. Rearranging the inequality,

‖D(θ̂− θ0)‖2
2
/

n + λ‖θ̂− θ0‖1 ≤ 4λ2s0(λ, δ)/φ2
0 (20)

Next, we refine the convergence rate of δ̂. Recall that

D′D
n

=

(
X̃′X̃

/
n2 X̃′G

/
n
√

n

G′X̃
/

n
√

n G′G
/

n

)
,

and note that

X̃′X̃
/

n2 = n−2
n

∑
t=1

x̃t−1 x̃′t−1
d→ (σεc0)2

∫ 1

0
W (r)W (r)′dr = Op(1)

G′G
/

n = n−1
n

∑
t=1

gtg′t
d→ Egtg′t

X̃′G
/

n
√

n = Op(n−1/2+q)

where W (·) is the standard Brownian motion, x̃t = xt ĉ, gt = (x′t−1δ0, z′t−1)
′, and q is any

positive number due to Lemma 2. Now, put this observation and the convergence rate of γ̂,

we just obtained, into the first inequality in (18) to deduce that

c1n‖δ̂− δ0‖1 ≤ Op(1)‖δ̂− δ0‖1

for some positive c1 by choosing q small, which yields the desired rate for δ̂

Proof of Proposition 2. Let

Sn(γ, δ) =
1
n

n

∑
t=1

(
yt − g′tγ− x′tδ

)2 .
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It is clear from Proposition 1 that

sup
δ

|Sn(γ̂, δ)− Sn(γ0, δ)| = op(n−1),

where the supremum is taken over any n−1 neighborhood of δ0. Therefore, we consider the

weak convergence of the stochastic process, i.e.,

Dn(b) = n
(

Sn(δ0 + n−1b)− Sn(δ0)
)

,

= −2c0

n

n

∑
t=1

utx′tb +
c2

0
n

b′
n

∑
t=1

xtx′tb

⇒ −2c0b′
[∫ 1

0
W (r)dU (r) + Λ

]
+ c2

0b′
∫ 1

0
W (r)W (r)′drb

:= D(b)

over any given compact space for b, where Sn(δ) = Sn(γ0, δ).

Furthermore, the estimator δ̂ is the minimizer of Sn(γ̂, δ) under the constraint that ‖δ‖1 =

1. The consistency of δ̂ means the sign-consistency as well. Thus,

0 = ‖δ̂‖1 − ‖δ0‖1

= ∑
j
(n−1sgn(δ0j))n(δ̂j − δ0j)

= sgn(δ0)
′b

with probability approaching 1. Therefore, we can conclude that

n(δ̂− δ0)→d arg min
b:sgn(δ0)′b=0

D(b),

by the argmax continuous mapping theorem.

Proof. Recall that the linear predictive regression for stock return predictability is uni-

variate. Therefore, proper reparameterisation from the VECM representation leads to one

cointegrating vector which represents a linear combination of all the cointegrating relation-

ships within xt.
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A.2 Lemmata

Lemma 1 Let
{

ztj
}

, j = 1, ..., p, be centered α-mixing sequences satisfying the following: for some

positive γ1, γ2 > 1, b, and c,

α (m) ≤ exp (−cmγ1)

P
{∣∣ztj

∣∣ > s
}
≤ H (s) := exp

(
1− (s/b)γ2

)
for all j (21)

γ =
(

γ−1
1 + γ−1

2

)−1
< 1,

ln p = O
(

nγ1∧(1−2γ1(1−γ)/γ)
)

. (22)

Then,

max
j≤p

∣∣∣∣∣ n

∑
t=1

ztj

∣∣∣∣∣ = Op
(√

n ln p
)

.

Proof of Lemma 1. Consider the sums of truncated variables first. Consider zM
tj =

ztj1
{∣∣ztj

∣∣ ≤ M
}
+ M1

{∣∣ztj
∣∣ > M

}
with M = (1 + nγ1)1/γ2 . Due to Proposition 2 in Merlevede

et al. (2011), we have

E

(
exp

(
n−1/2

n

∑
t=1

(
zM

tj − EzM
tj

)))
= O (1) ,

uniformly in j and thus

E max
j≤p

∣∣∣∣∣n−1/2
n

∑
t=1

(
zM

tj − EzM
tj

)∣∣∣∣∣ = O (ln p) . (23)

For the remainder term, note that

E max
j≤p

n

∑
t=1

∣∣∣zt − zM
t + EzM

t

∣∣∣ ≤ npE
∣∣∣ztj − zM

tj + EzM
tj

∣∣∣
≤ 2np

∫ ∞

M
H (x) dx

= O (np exp (−nγ1)) ,

where the last equality is obtained by bounding the integral by MH(M) = exp (−nγ1) in

general since H (x) decays at an exponential rate.

Thus,

E max
j≤p

∣∣∣∣∣ n

∑
t=1

ztj

∣∣∣∣∣ ≤ E max
j≤p

∣∣∣∣∣ n

∑
t=1

zM
tj − EzM

tj

∣∣∣∣∣+ E max
j≤p

∣∣∣∣∣ n

∑
t=1

[
ztj −

(
zM

tj − EzM
tj

)]∣∣∣∣∣
= O

(√
n ln p

)
+ O (np exp (−nγ1)) .
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Finally, recall that ln p = o (nγ1) by (22).

Next, we derive another maximal inequality involving integrated processes by means of

martingale approximation. (e.g. Hansen 1992)

Lemma 2 Let {xt} be an integrated process such that ∆xt is centered and x0 = Op (1). Let {∆xt} and{
ztj
}

, j = 1, ..., p, be α-mixing sequences satisfying the conditions in Lemma 1. Also let p = O (nr)

for some r < ∞. Then,

max
1≤j≤p

∣∣∣∣∣ n

∑
t=1

ztjxt

∣∣∣∣∣ = Op

(
(n ∨ p)1+δ

)
,

for any δ > 0.

Proof of Lemma 2.

We apply the martingale difference approximation to ztj following Hansen (1992). Let

Ft denote the generated sigma field from all zt−s,j and xt+1−s, s, j = 1, 2, ... and Et (·) the

conditional expectation based on Ft. Define

εtj =
∞

∑
s=0

(
Etzt+s,j − Et−1zt+s,j

)
, ζtj =

∞

∑
s=1

Etzt+s,j.

Then, it is clear that

ztj = εtj + ζt−1,j − ζt,j

and εtj is a martingale difference sequence.

We begin with deriving a moment bound for the sum of a martingale difference array{
εt = εtjxt/

√
n
}

. Consider a truncated sequence

εC
t = εt1 {|εt| < C}+ C1 {εt ≥ C} − C1 {εt ≤ −C}

and its centered version

ε̃C
t = εC

t − E
(

εC
t |Ft−1

)
.

Then, by construction ε̃C
t is a martingale difference sequence. Furthermore,∣∣∣ε̃C

t

∣∣∣ ≤ ∣∣∣εC
t

∣∣∣+ E
(∣∣∣εC

t

∣∣∣ |Ft−1

)
≤ 2C

by the triangle and Jensen’s inequalities and by the fact that
∣∣εC

t
∣∣ ≤ C. Furthermore, let

rC
t = εt − ε̃C

t =
(

εt − εC
t

)
− E

((
εt − εC

t

)
|Ft−1

)
,

where the last equality following from the fact that {εt} is an MDS and thus

εt = ε̃C
t + rC

t .
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By Azuma’s (1967) inequality,

Pr

{∣∣∣∣∣ 1√
n

n

∑
t=1

ε̃C
t

∣∣∣∣∣ ≥ c

}
≤ 2 exp

(
− c2

4C2

)
.

On the other hand, since rC
t = 0 if |εt| ≤ C, we have for any c > 0,

Pr

{∣∣∣∣∣ 1√
n

n

∑
t=1

rC
t

∣∣∣∣∣ > c

}
≤ Pr

{
max

t
|εt| > C

}
.

However,

Pr
{

max
t
|εt| > C

}
≤ Pr

{
max

t

∣∣εtj
∣∣max

t

∣∣∣∣ xt√
n

∣∣∣∣ > C
}

≤∑
t

Pr
{∣∣εtj

∣∣ > √C
}
+ Pr

{
max

t

∣∣∣∣ xn√
n

∣∣∣∣ > √C
}

≤ C−q
n

∑
t=1

E
∣∣εtj
∣∣2q

+ 2n exp

(
− (nC)γ/2

C1

)
+ exp

(
− C

C2

)
,

where the first term comes from Markov inequality and the second and third terms are given

by Merlevede et al.’s (2011) equation (1.11).

Next, we derive some moments bounds for the sums of ζtj and εtj. By (A.1) of Hansen

(1992), if ztj is α-mixing of size −qβ/ (q− β) with E
∣∣ztj
∣∣q < ∞,

(
E
∣∣ζtj
∣∣β)1/β

≤ 6
∞

∑
k=1

α
1/β−1/q
k

(
E
∣∣ztj
∣∣q)1/q

.

And, by the triangle inequality,

(
E
∣∣εtj
∣∣q)1/q

=
(

E
∣∣ztj + ζtj − ζt−1,j

∣∣q)1/q
≤
(

E
∣∣ztj
∣∣q)1/q

+ 2
(

E
∣∣ζtj
∣∣q)1/q

.

Under our moment condition and mixing decay rate in Lemma 1, these quantities are bounded

for any β and q such that q > β.

Then, for any an,

Pr

{∣∣∣∣∣ 1
an
√

n

n

∑
t=1

εt

∣∣∣∣∣ ≥ c

}

≤ Pr

{∣∣∣∣∣ 1√
n

n

∑
t=1

ε̃C
t

∣∣∣∣∣ ≥ an
c
2

}
+ Pr

{
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t
|εt| > C

}

≤ 2 exp
(
− a2

nc2

4C2

)
+ C−q

n

∑
t=1

E
∣∣εtj
∣∣2q

+ 2n exp

(
− (nC)γ/2

C1

)
+ exp

(
− C

C2

)
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Given this bound, we can deduce from the union bound that

Pr

{
max
1≤j≤p

∣∣∣∣∣ 1
an
√

n

n

∑
t=1

ε jt

∣∣∣∣∣ > c1

}

≤ p Pr

{∣∣∣∣∣ 1
an
√

n

n

∑
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ε jt
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}

≤ p

(
2 exp
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1
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E
∣∣εtj
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+ 2n exp

(
− (nC)γ/2

C1

)
+ exp

(
− C
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))
.

Since E
∣∣εtj
∣∣2q

< ∞, we begin with choosing C such that pnC−q → 0. This choice of C makes

the last two terms degenerate and for any c1 > 0, the first term also degenerates as long as

an ≥ bn (pn)
1
2q ln 2p for some bn → ∞. Since q is arbitrary and p is at most a polynomial of n,

we can conclude that

max
j≤p

∣∣∣∣∣ 1n n

∑
t=1

εtjxt

∣∣∣∣∣ = Op

(
(p ∨ n)

1
q
)

,

for any q.

Next, note that

max
j

∣∣∣∣∣ n

∑
t=1

(
ζt−1,j − ζt,j

)
xt

∣∣∣∣∣
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j
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(
ζt−1,j∆xt − Eζt−1,j∆xt
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= Op
(√

n log p
)
+ Op

(√
n log p

)
+ O (n) ,

by the observation that supt |xt| /
√

n = Op (1) , maxj
∣∣ζ0,j

∣∣ = Op
(√

log p
)

, and by Lemma 1

with {|xy| > c} ⊂
{
|x| >

√
c
}
∪
{
|y| >

√
c
}

.
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